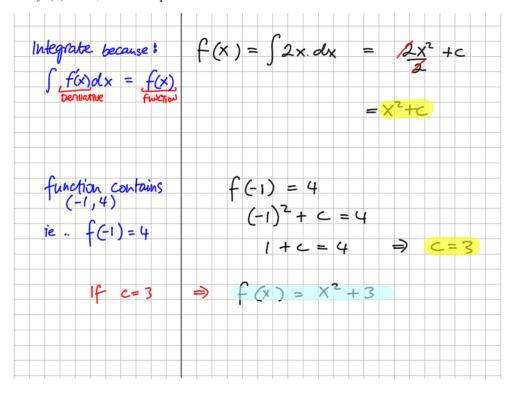
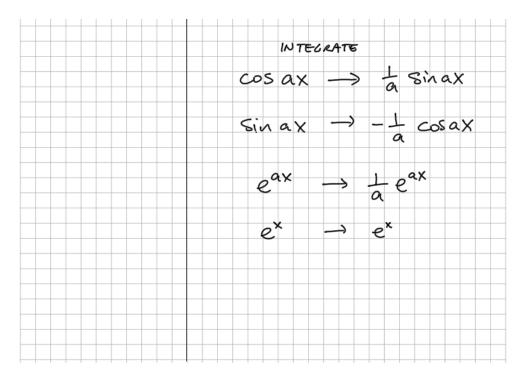

Integration January 05, 2015

Section 4.1 Introduction to Integration

6. Find (i)
$$\int \frac{x^4 - 3x^3 + 4x}{x} dx$$
 (ii) $\int \frac{3x^3 - x^2 + 6}{x^2} dx$ (iii) $\int \frac{x^2 - 2x + 6}{\sqrt{x}} dx$

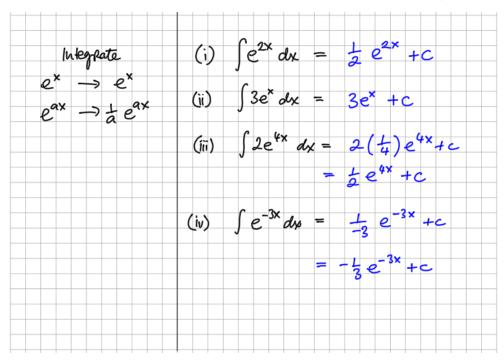

Simplify (i) = $\int (x^3 - 3x^2 + 4) dx$

Unctease the power by 1 divide by $= \frac{x^4 - 8x^3 + 4x + c}{4}$


Simplify (ii) = $\int (3x - 1 + 6x^{-2}) dx$
 $= \frac{3x^2 - x + 6x^{-1} + c}{2}$

Simplify (iii) = $\int (x^{3/2} - 2x^{1/2} + 6x^{-1/2}) dx$
 $= \frac{3x^2 - x + 6x^{-1} + c}{2}$
 $= \frac{3x^2 - x + 6x^{-1} + c}{2}$

7. A curve with equation y = f(x) contains the point (-1, 4). If f'(x) = 2x, find the equation of the curve.



Section 4.2 Integrating exponential and trigonometric functions

Exercise 4.2 -

- **1.** Find the following integrals:
 - (i) $\int e^{2x} dx$
- (ii) $\int 3e^x dx$
- (iii) $\int 2e^{4x} dx$ (iv) $\int e^{-3x} dx$

Syllabus

- recognise integration as the reverse process of differentiation
- use integration to find the average value of a function over an interval
- integrate sums, differences and constant multiples of functions of the form
 - x^a , where $a \in \mathbf{Q}$
 - a^x , where $a \in \mathbf{R}$
 - Sin ax, where $a \in \mathbf{R}$
 - Cos ax, where a ∈ R
- determine areas of plane regions bounded by polynomial and exponential curves

Maths Tables

Integration

Constants of integration omitted.

f(x)	$\int f(x)dx$
$x^n, (n \neq -1)$	$\frac{x^{n+1}}{n+1}$
$\frac{1}{x}$	$\ln x $
e^x	e ^x
e^{ax}	$\frac{1}{a}e^{ax}$
$a^x (a > 0)$	$\frac{a^x}{\ln a}$
$\cos x$	$\sin x$
$\sin x$	$-\cos x$
tan x	$\ln \sec x $
$\frac{1}{\sqrt{a^2-x^2}} (a>0)$	$\sin^{-1}\frac{x}{a}$
$\frac{1}{x^2 + a^2} (a > 0)$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$

learn
$$\begin{cases} \cos ax \longrightarrow \frac{1}{a} \sin ax \\ \sin ax \longrightarrow -\frac{1}{a} \cos ax \end{cases}$$