


Section 3.2 Stationary points

Points on a curve at which $\frac{dy}{dx}$ is zero are called **stationary points**.

In the curve above, A and B are stationary points and they are also **turning points**.

The turning point at A is called a **local maximum point**, since the value of the function at this point exceeds all values of the function immediately to the right or left of A.

A maximum value of a function is not necessarily the greatest value of the function. This is illustrated in the curve above where the value of the function at C is greater than the value of the function at A.

The turning point at B above is called a **minimum turning point** or simply a **local minimum**.

Example 1

Find the turning points of the curve $y = x + \frac{1}{x}$.

Key Idea: At birning points Ay = 0	$y = X + \frac{1}{X} = X + X^{-1}$ $0 \text{ dy} = 1 - X^{-2}$
Plan O differentiate Curve to get Slope function (2) let dy = 0 and olx	
Solve to get x values (3) SuB x values into Curve to get y values	3
	Points (1,2) and (-1,-2)