Differential Calculus 3 multiple 2

Section 2.5 Second derivatives

75

For any function y = f(x), the first derivative is $\frac{dy}{dx}$ or f'(x).

If we differentiate the resulting function, we get the **second derivative**.

The second derivative is denoted by $\frac{d^2y}{dx^2}$ or f''(x).

 $\frac{d^2y}{dx^2}$ is pronounced 'dee two y dee x squared'.

We learned earlier that for any function y = f(x), $\frac{dy}{dx}$ represents the slope of the tangent to the curve at any point on the curve. When dealing with the graphs of functions in the next chapter, we will see that $\frac{d^2y}{dx^2}$ gives the rate at which the slope is changing over a given interval.

Example 1

Given that
$$y = x + \frac{1}{x}$$
, find $\frac{d^2y}{dx^2}$.

Example 2

If
$$y = \frac{3}{x} + 4x$$
, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$; hence, show that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$.

