Functions

Section 1.5 Limits - Continuity

Introduction to limits -

Consider this sequence of numbers: $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$, ...

If we add the first two numbers, we get $\frac{3}{4}$. If we add the first three, we get $\frac{7}{8}$.

If we add the first six numbers, we get $\frac{63}{64}$.

Notice that the more terms we add, the closer the result gets to 1 but it **never reaches** 1. In mathematics, we say that the **limit** of the sum of these numbers is 1.

We will now take the function $f(x) = x^2$ and consider its value as x approaches 3 from below and above 3

①
$$f(2) = 4$$
; $f(2.5) = 6.25$; $f(2.75) = 7.5625$; $f(2.9) = 8.41$...

②
$$f(4) = 16$$
; $f(3.5) = 12.25$; $f(3.25) = 10.5625$; $f(3.1) = 9.61$...

As x gets closer to 3, the value of x^2 gets closer to 9. 9 is said to be the limit of $f(x) = x^2$ as x **tends to** 3.

This is written as $\lim_{x\to 3} (x^2) = 9$.

Limit notation

 $\lim_{x \to a} f(x) = p$ states that f(x) approaches p as x gets close to a.

In general, to find the limit of f(x), we substitute a for x in the function.

For example, $\lim_{x \to 2} \frac{3x + 2}{x + 4} = \frac{3(2) + 2}{2 + 4} = \frac{8}{6} = \frac{4}{3}$.

Now consider $\lim_{x\to 3} \frac{x^2-9}{x-3}$.

When we substitute 3 for x, we get $\frac{9-9}{3-3} = \frac{0}{0}$.

The result $\frac{0}{0}$ is known as an **indeterminate form** as its value cannot be determined.

If after substitution the result is $\frac{0}{0}$, some other method must be found to obtain the limit.

The most common method used involves factorising the numerator and denominator and then dividing by the common factor.

Thus,
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x + 3)(x - 3)}{(x - 3)} = \lim_{x \to 3} (x + 3) = 6.$$

Note: It is important to realise that if $f(x) = \frac{x^2 - 9}{x - 3}$, then f(3) does not exist, but the $\lim_{x\to 3}(x)$ does exist.

Example 1

Evaluate (i)
$$\lim_{x \to 0} \frac{4x + 1}{2x + 3}$$
 (ii) $\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$.

Limit of a function as $x \rightarrow \infty$

In the example above, we investigated the limit of a function as the variable tended to a fixed number. Now we will examine the limit of a function as the variable tends to infinity. We use the symbol ∞ to denote infinity.

Now consider $\lim_{x\to\infty} \left(\frac{1}{x}\right)$.

When
$$x = 10, \frac{1}{x} = \frac{1}{10} = 0.1$$
. When $x = 1000, \frac{1}{x} = \frac{1}{1000} = 0.001$.

When
$$x = 1,000,000, \frac{1}{x} = \frac{1}{1,000,000} = 0.000001.$$

These examples illustrate that as x increases,

the value of $\frac{1}{x}$ decreases and in fact tends to zero.

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

If the numerator is any fixed number k, the $\lim_{x\to\infty} \frac{k}{x}$ is also zero.

Since $\lim_{x\to\infty}\frac{1}{x}=0$, it follows that $\lim_{x\to\infty}\frac{1}{x^2}=0$ and $\lim_{x\to\infty}\frac{k}{x^2}=0$, where $k\in R$.

Example 2

$$(i) \lim_{x \to \infty} \frac{4x + 1}{2x + 3}$$

Evaluate (i)
$$\lim_{x \to \infty} \frac{4x+1}{2x+3}$$
 (ii) $\lim_{x \to \infty} \frac{3x^2-2x+4}{5x^2+4x-3}$

Evaluate (i) $\lim_{x \to \infty} 2x + 3$	$5x^2 + 4x - 3$
Trick multiply (i) =	$= \lim_{x \to \infty} \frac{\frac{1}{x}(4x+1)}{\frac{1}{x}(2x+3)}$
$\lim_{X \to \infty} \frac{1}{X} = 0$ $\lim_{X \to \infty} \frac{3}{X} = 0$	$\lim_{X \to \infty} \frac{4 + x}{2 + 3x} = \frac{4 + 0}{2 + 0}$ $\frac{4}{2} = 2$
	$\frac{1}{\sqrt{2}(3x^{2}-2x+4)}$ $\frac{1}{\sqrt{2}}(5x^{2}+4x-3)$
$\frac{1}{x}$ = $\lim_{x \to \infty} \frac{1}{x}$ = $\lim_{x \to \infty} \frac{1}{x}$	