

Section 5.3 Instalment savings (annuities)

Text & Tests 6

1. Instalment saving

Future value, F, of instalment savings over t instalments:

$$\mathbf{F} = \mathbf{E}\mathbf{P}(1+i)^{1} + \mathbf{E}\mathbf{P}(1+i)^{2} + \mathbf{E}\mathbf{P}(1+i)^{3} + \dots + \mathbf{E}\mathbf{P}(1+i)^{t} = \frac{\mathbf{E}\mathbf{P}(1+i)[(1+i)^{t} - 1]}{i}$$

€P = the amount saved at the start of each month/year

t =the number of payments (months/years)

i =the interest rate, expressed as a decimal

$$S_n = \frac{\alpha \left(1 - \Gamma^n \right)}{1 - \Gamma}$$

Example 1

Catríona saves €400 every three months for five years at an effective quarterly rate o 0.9%.

- (i) Represent her savings by a geometric series
- (ii) Find the value of her investment at the end of the period.

Syears = 20 quarters
$$F = f(1+i)t$$

$$F = 400(1.009)^{20}$$

$$F_{19} = 400(1.009)^{19}$$

$$F_{19} = 400(1.009)^{19}$$

$$F_{2} = 400(1.009)^{1} \int \times 1.009 = \Gamma$$

$$A = F_{1} = 400(1.009)^{1} \int \times 1.009 = \Gamma$$

$$A = F_{1} = 400(1.009)^{1} \int \times 1.009 = \Gamma$$

$$A = F_{1} = 400(1.009)^{1} \int \times 1.009 = \Gamma$$

$$A = 403.60$$

$$A = 403.60$$

$$A = 20$$

$$A = 403.60$$

$$A$$