

Section 5.2 Depreciation

$$F = P(1-i)^{t}$$

Depreciation: $F = P(1 - i)^t$ F = future value i = the percenta

i =the percentage depreciation of $\in P$ per year

t = number of years

P = initial value

Example 1

A company buys a new machine priced at €35 000.

The machine depreciates by 20% on a reducing balance basis each year.

- (i) What will the value of the machine be in 4 years time?
- (ii) By how much has the machine depreciated in value during this time?

$$F = P(1-i)^{t} = 35,000 (0.8)^{4}$$

= 14,336

Depreciation = 35000-14336 = 20664

Example 2

A garage has a petrol stock of 100 000 litres.

If the manager estimates (a) that he will sell 4000 litres a day

(b) that he will sell 5% of his stock per day,

calculate the difference in his estimates after 20 days.

6)
$$f = P(1-i)^t = (00000(1-0.05)^{20}$$

REDUCING RALANCE = $[00000(0.95)^{20}]$

DEPRECIATION = $35,848.6$ littles used

DIFFERENCE = 80,000 - 35,848.6 = 4,415.4 litres

- 5. A company asset reduces in value from €175 000 to €73 187.09, at a depreciation rate of 16% per annum over t years.
 - (i) By trial and error, estimate the value of t.
 - (ii) Using logs, find the value of t.

$$F = P(1-i)^{t}$$

$$F = 73187.09$$

$$F = P(1-i)^{t}$$

$$F = 73187.09$$

$$P = 175000$$

$$i = 16\%$$

$$t = ?$$

$$t = log_{0.84} \frac{73187.09}{175000} \approx 5 \text{ years}$$