4. What monthly rate of interest, correct to 2 places of decimals, is equivalent to an annual rate of (i) 6% (ii) 2.5% (iii) 4%?

$$(1+R)^{12} = (1+i)^{12}$$

(i)
$$R = \sqrt[12]{1.06} - 1 = 0.004867$$

 $\approx 0.49\%$

(ii)
$$R = \sqrt[12]{1.025} - 1 = 0.002598$$

 $\approx 0.21\%$

Let
$$i = AER$$
 $R = MER$

(i) $R = {}^{12}\sqrt{1.06} - 1 = 0.004867$
 $\approx 0.49\%$

(ii) $R = {}^{12}\sqrt{1+i} - 1 = 0.002598$
 $\approx 0.21\%$

(iii) $R = {}^{12}\sqrt{1.04} - 1 = 0.00327$
 $\approx 0.33\%$

- **9.** €12 000 is invested at an AER of 3.5%. Find the value of the investment after
- (i) 5 years 3 months (ii) 8 years 2 months (iii) 10 years 6 months.

$$F=P(1+i)^6$$

$$R = \sqrt[12]{1.035} - 1 = 0.00287$$

Let
$$i = AER$$
 $R = MER$

Convert AER to MER?

 $R = {}^{12}\sqrt{1+i} - 1$
 $R = {}^{12}\sqrt{1 \cdot 035} - 1 = 0.00287$
 $F = P(1+i)^{6}$

(i) $P = 12000$
 $R = 0.00287$
 $F = 12000$
 $F = 12000$
 $F = 14,375.34$

$$F = 12000 (1.00287)^{63}$$

= $614.375.34$