Probability 1

Section 1.5 Mutually exclusive events - The addition rule

M.E. events can not occur together.

 E_1 = pick Red card E_2 = pick Spade

Consider the following two events when drawing a card from a pack of 52 playing cards:

$$A = drawing an ace$$
 $B = drawing a king.$

These two events are said to be **mutually exclusive** as they cannot occur together.

If the events A and B cannot happen together, then

$$P(A \text{ or } B) = P(A) + P(B)$$

This is called the addition law for mutually exclusive events.

So
$$P(\text{draw an ace or king}) = P(\text{ace}) + P(\text{king})$$

= $\frac{4}{52} + \frac{4}{52}$
= $\frac{8}{52} = \frac{2}{13}$

Outcomes are mutually exclusive if they cannot happen at the same time.

When events are not mutually exclusive.

We will now consider events which may occur at the same time.

If A is the event: selecting an ace from a pack of cards and

B is the event: selecting a heart from a pack of cards

then
$$P(A) = \frac{4}{52}$$
 and $P(B) = \frac{13}{52}$

In this situation, both events may occur at the same time since the ace of hearts is common to both.

In general, when two events A and B can occur at the same time,

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Thus in the example given above,

$$P(\text{ace or heart}) = P(\text{ace}) + P(\text{heart}) - P(\text{ace and heart})$$
$$= \frac{4}{52} + \frac{13}{52} - \frac{1}{52}$$
$$= \frac{16}{52}$$

This result can be verified as there are 4 aces and 13 hearts in a pack of cards. Since one of the aces is the ace of hearts, there are 16 aces or hearts in the pack.

i.e. $P(\text{ace or a heart}) = \frac{16}{52}$, as already found.

Example 1

A card is drawn at random from a pack of 52.

What is the probability that the card is

- (i) a club
- (ii) a king
- (iii) a club or a king

- (iv) a red card
- (v) a queen
- (vi) a red card or a queen

P(King and Club) = 52

(iv) P(Red) = {

P(Red and Over) = 32

(IV) $P(Real) = \frac{1}{13}$ (V) $P(Red on Queen) = \frac{1}{2} + \frac{1}{13} - \frac{2}{52}$ $= \frac{1}{13}$

Venn diagrams for mutually exclusive events _

(i) Mutually exclusive

$$P(A \text{ or } B) = P(A) + P(B)$$

 $P(A \cup B) = P(A) + P(B)$

(ii) Non-mutually exclusive

$$P(A \text{ or } B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Example 2

A and B are two events such that $P(A) = \frac{19}{30}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{4}{5}$. Find $P(A \cap B)$.

$$P(AVB) = P(A) + P(B) - P(ANB)$$

$$\Rightarrow \frac{4}{5} = \frac{19}{30} + \frac{2}{5} - P(ANB)$$

$$\frac{4}{5} = \frac{31}{30} - P(ANB)$$

$$P(ANB) = \frac{31}{30} - \frac{4}{5} = \frac{7}{30}$$

Exhaustive events

Consider these events when throwing a dice:

A: Getting an odd number

B: Getting an even number

These two events contain all the possible outcomes when a dice is thrown.

These events are said to be **exhaustive**.

If A and B are exhaustive events, then

$$P(A) + P(B) = 1.$$

A set of events is exhaustive if the set contains all possible outcomes.

Venn diagrams _

A Venn diagram is a useful way to represent data or probabilities. Each region of a Venn diagram represents a different set of data.

The Venn diagram on the right shows two sets, A and B, in the sample space S.

The number of elements in each region is also shown.

8 is the number of elements in A but not in B. This is written as A/B.

12 is the number of elements in B but not in A. This is written as B/A.

6 is the number of elements in A and B. This is written as $A \cap B$.

4 is the number of elements in neither A nor B.

This is written as $(A \cup B)'$.

If information is presented in the form of a Venn diagram, it is easy to write down the probability of different events occurring.

the probability of either A or B is
$$P(A \cup B) = \frac{8+6+12}{8+6+12+4} = \frac{26}{30} = \frac{13}{15}$$

Example 3

The given Venn diagram represents the subjects taken by a group of 50 pupils.

(i) Find the value of x.

Now find the probability that a person chosen at random takes

- (ii) both subjects
- (iii) neither subject
- (iv) Science but not Maths
- (v) Maths or Science or both.

(i)
$$X = 50 - (20 + 12 + 4) = 50 - 36 = 14$$

(ii)
$$P(Both) = \frac{14}{50} = \frac{7}{25}$$
 (28%)
(iii) $P(neither) = \frac{4}{50} = \frac{7}{25}$ (8%)
(iv) $P(S \mid m) = \frac{12}{50} = \frac{6}{25}$ (24%)

(v)
$$P(MUS) = \frac{46}{50} = \frac{23}{25}$$
 (92%)

Exercise 1.5

1. A box contains discs numbered 1 to 16.

If a disc is selected at random, what is the probability that it is

(i) an odd number

- (ii) a multiple of 4
- (iii) an odd number or a multiple of 4?

(i)
$$P(\text{odd}) = \frac{1}{2}$$

(i) $P(\text{multiple } 3,4) = \frac{1}{4}$

$$P(AUB) = P(A) + P(B) - P(ANB)$$

$$P(AB) = 0$$
 (ii) $P(odd \text{ one multiple } q^4) = \frac{1}{2} + \frac{1}{4}$
in this case
i.e., m. \(\text{iii} \) $= \frac{3}{4}$