Example 1

The numbers 1 to 9 are written on cards and placed in a box.

A card is drawn at random from the box.

Find the probability that the number is prime, given that the number is odd.

$$\rho(A \cap B) = \rho(A) * \rho(B|A)$$

$$\Rightarrow P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(PRime \cap odd) = \frac{3}{9}$$

$$P(odd) = \frac{5}{9}$$

$$P(Prime | odd) = \frac{\binom{3}{4}}{\binom{5}{4}} = \frac{3}{5}$$

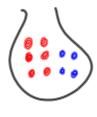
Example 2

A bag contains 6 red and 4 blue discs. A disc is drawn from the bag and not replaced. A second disc is then drawn.

Find the probability that

- (i) the first two discs are blue
- (ii) the second disc drawn is red
- (iii) one disc is red and the other disc is blue
- (iv) both discs are the same colour.

NOT INDEPENDENT →CONDITIONAL PROBABILITY

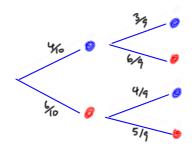


- (i) $P(B,B) = \left(\frac{4}{10}\right)\left(\frac{3}{7}\right) = \frac{4}{30}$
- (ii) P(second is Red)

$$= P(RR \bigcirc BR) = \left(\frac{6}{10}\right)\left(\frac{5}{9}\right) + \left(\frac{4}{10}\right)\left(\frac{6}{9}\right) = \frac{3}{5}$$

(ii)
$$P(RB \bigcirc BR) = (\frac{6}{10})(\frac{4}{9}) + (\frac{4}{10})(\frac{6}{9}) = \frac{8}{15}$$

(iv)
$$P(RR \bigcirc BB) = (\frac{6}{10})(\frac{5}{9}) + (\frac{4}{10})(\frac{7}{9}) = \frac{7}{15}$$

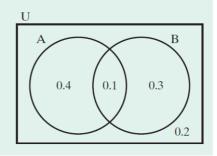


Example 3

Use the given Venn diagram to write down

- (i) P(A|B)
- (ii) P(B|A)

conditional probability



$$P(A \land B) = P(A) * P(A|B) \Rightarrow P(A|B) = P(A \land B)$$

$$P(A|B) = P(A \cap B)$$

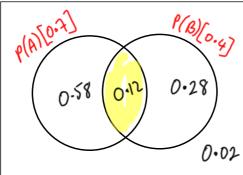
(i)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.1}{0.4} = \frac{1}{4}$$

(ii) $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.1}{0.5} = \frac{1}{5}$

(ii)
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{O \cdot !}{O \cdot S} = \frac{1}{S}$$

Example 4

Two events A and B are such that P(A) = 0.7, P(B) = 0.4 and $P(A \mid B) = 0.3$. Determine the probability that neither A nor B occurs.



conditional probability

$$P(A \cap B) = P(B) * P(A \mid B)$$

= $(6.4)(0.3) = 0.12$

$$P(AUB)' = 1 - P(AUB) = 0.02$$

Exercise 1.7-

- 1. A card is drawn at random from a pack of 52 playing cards.
 - (i) Given that the card is black, find the probability that it is a spade.
 - (ii) Given that the card is red, find the probability that it is a queen.
 - (iii) Given that the card is a picture card, find the probability that it is a king.

$$\rho\left(\text{Spade} \mid \text{Black}\right) = \frac{1}{2}$$

$$P(Q \text{ ween } | \text{Red}) = \frac{2}{26} = \frac{1}{13}$$

$$P(King | Picture) = \frac{4}{12} = \frac{1}{4}$$

- 2. The table shows information about a group of adults.
 - (i) A person is chosen at random from the group.

What is the probability that the person can drive?

		Can drive	Cannot drive	
	Male	32	8	40
	Female	38	12	50
can drive?		70	20	90

- (ii) A man in the group is chosen at random. What is the probability that he can drive?
- (iii) Find the probability that a person chosen at random can drive, given that the person is a female.

(i)
$$P(Can dkive.) = 7090 = 79$$

(ii)
$$P(\text{Can drive} | \text{man}) = \frac{32}{40} = \frac{4}{5}$$

(iii)
$$\rho$$
 (can obtive | female) = $\frac{39}{50} = \frac{19}{25}$

- 3. Two fair dice are thrown and the product of the numbers showing is recorded. Given that one dice shows a 2, find the probability that the product of the two numbers showing is
 - (i) exactly 6
- (ii) 6 or more.

Sample space of products

	-1	2	3	4	5	6
1)	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18
4	4	8	12	16	20	24
5	5	10	15	20	25	30
6	6	12	18	24	30	36

$$P(Product 6) = \frac{4}{36} = \frac{1}{9}$$

Ordinary

20

25

Girls

Boys

Higher

35

40

75

55

65

120

$$P(PRoduct 6) = \frac{4}{36} = \frac{1}{9}$$

$$P(PRoduct 6 \text{ s.e. more}) = \frac{26}{26} = \frac{13}{18}$$

4. A school enters 120 pupils for the Junior Certificate maths exam.

The given table shows the details of the entries.

(i) Write down the probability that a pupil

(1)	chosen at random is entered for Ordinary level.	45			
(ii)	A pupil is chosen at random. This pupil is a girl.				
	Find the probability that the girl was entered for Higher level.				

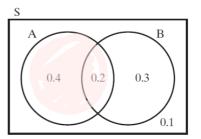
(iii) A pupil is chosen at random. The pupil was entered for Ordinary level. Find the probability that the pupil was a boy.

(i)
$$P(OL) = \frac{45}{120} = \frac{3}{8}$$

(ii)
$$P(HL|G) = \frac{35}{55} = \frac{7}{11}$$

(iii)
$$P(B|OL) = \frac{25}{45} = \frac{5}{9}$$

- **12.** Based on the probabilities shown in the given Venn diagram, find each of the following:
 - (i) *P*(A)
 - (ii) $P(A \cap B)$
 - (iii) $P(A \cup B)$
 - (iv) P(A|B)
 - (v) P(B|A).



$$P(A \cap B) = P(A) * P(B|A) \Rightarrow P(B|A) = \frac{P(A \cap B)}{P(A)}$$

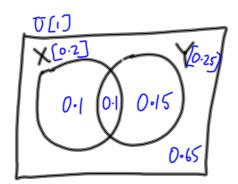
(i)
$$P(A) = 0.6$$

(iv)
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{O \cdot 2}{O \cdot 5} = \frac{2}{5}$$

(v)
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.2}{0.6} = \frac{1}{3}$$

- **14.** X and Y are two events such that P(X) = 0.2, P(Y) = 0.25 and $P(X \cap Y) = 0.1$. Illustrate this information on a Venn diagram. Use the diagram to find
 - (i) $P(X \cup Y)$
- (ii) P(X|Y)
- (iii) P(Y|X).

$$P(A \land B) = P(A) * P(B|A) \Rightarrow P(B|A) = \frac{P(A \land B)}{P(A)}$$



(i)
$$P(X_0Y) = 0.35$$

(ii)
$$P(X|Y) = P(X \cap Y)$$

$$P(Y)$$

$$= \frac{0.10}{0.25} = \frac{20}{25} = \frac{2}{5}$$

$$(iii) P(Y|X) = \frac{P(X \cap Y)}{P(X)}$$

$$= \frac{0.1}{0.2} = \frac{1}{2}$$