Independent Events

Section 1.6 The multiplication law for independent events ——

30

Independent-if first event doesn't effect the probability of 2nd event.

Paul spins a coin C

and rolls a dice.

His results are shown on the right.

The coin and the dice do not affect each other, so their outcomes are **independent**.

There are 12 equally likely outcomes of the coin and dice, as shown in the diagram on the right.

From the sample space, we can see that the probability of a head and a 5 is $\frac{1}{12}$.

The probability of each outcome can also be found by multiplying the separate probabilities, as shown above.

Dice	6	H, 6	T, 6
	5	H, 5	T, 5
	4	H, 4	T, 4
	3	H, 3	T, 3
	2	H, 2	T, 2
	1	H, 1	T, 1
		II(1)	Tr(-:1)

H(ead) T(ail)

Coin

This illustrates the **multiplication law** of probability which states that for independent events A and B,

$$P(A \text{ and } B) = P(A) \times P(B)$$

This law is sometimes called the AND Rule.

The multiplication law applies to any number of independent events.

Example 1

multiplication rule

When two dice are thrown, what is the probability of getting

- (i) two sixes
- (ii) 4 or more on each die?

Example 2

These two spinners are spun. What is the probability that

- (i) spinner A shows red
- (ii) spinner B shows red
- (iii) both spinners show red
- (iv) A shows red and B shows blue
- (v) both show blue
- (vi) both show white
- (vii) neither shows white?

independent events!

(v)
$$P(B,B) = (\frac{2}{6})(\frac{2}{5}) = \frac{4}{30} = \frac{2}{15}$$

(Vii)
$$P(no w) = (\frac{1}{2})(\frac{3}{5}) = \frac{3}{10}$$

Example 3

A gambler must throw a 6 with a single dice to win a prize. Find the probability that he wins at his third attempt.

$$P(\text{not } 6, \text{not } 6, 6) = (\frac{5}{6})(\frac{5}{6})(\frac{1}{6}) = \frac{25}{216}$$

Example 4

Three pupils A, B and C have their birthdays in the same week.

What is the probability that the three birthdays

- (i) fall on a Monday
- (ii) fall on the same day
- (iii) fall on three different days?

(i)
$$P(m,m,m) = (\frac{1}{4})(\frac{1}{4})(\frac{1}{4}) = \frac{1}{343}$$

(ii)
$$\rho$$
 (Same day) = $7 \times \text{Robability all an Particular day}$
= $\frac{7}{343} = \frac{1}{49}$

(iii)
$$P(\text{all different days}) = (1)(\frac{6}{7})(\frac{5}{7})$$

Not independent

$$= \frac{39}{49}$$