

Section 1.6 The multiplication law for independent events -_

Independent-if first event doesn't effect the probability of $2 n d$ event.

His results are shown on the right.
The coin and the dice do not affect each other, so their outcomes are independent.
There are 12 equally likely outcomes of the coin and dice, as shown in the diagram on the right.
From the sample space, we can see that the probability of a head and a 5 is $\frac{1}{12}$.

The probability of each outcome can also be
found by multiplying the separate probabilities, as shown above.

This illustrates the multiplication law of probability which states that for independent events A and B,

$$
P(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(A) \times P(\mathrm{~B})
$$

This law is sometimes called the AND Rule.

The multiplication law applies to any number of independent events.

Example 1

multiplication rule

When two dice are thrown, what is the probability of getting
(i) two sixes
(ii) 4 or more on each die?

Example 2
These two spinners are spun. What is the probability that
(i) spinner A shows red
(ii) spinner B shows red
(iii) both spinners show red
(iv) A shows red and B shows blue
(v) both show blue
(vi) both show white
(vii) neither shows white?

independent events!
(i) $P($ Red on $A)=\frac{1}{6}$
(ii) $P($ Red $\sim B)=\frac{1}{5}$
(iii) $P(R, R)=\left(\frac{1}{6}\right)\left(\frac{1}{5}\right)=\frac{1}{30}$
(iv) $P(R, B)=\left(\frac{1}{6}\right)\left(\frac{2}{5}\right)=\frac{2}{30}=\frac{1}{15}$
(v) $P(B, B)=\left(\frac{2}{6}\right)\left(\frac{2}{5}\right)=\frac{4}{30}=\frac{2}{15}$
(vi) $P(w, w)=\left(\frac{1}{2}\right)\left(\frac{2}{5}\right)=\frac{2}{10}=\frac{1}{5}$
(vii) $P\left(n_{0} w\right)=\left(\frac{1}{2}\right)\left(\frac{3}{5}\right)=\frac{3}{10}$

Example 3
A gambler must throw a 6 with a single dice to win a prize. Find the probability that he wins at his third attempt.

$$
P(\operatorname{not} 6, \operatorname{not} 6,6)=\left(\frac{5}{6}\right)\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)=\frac{25}{216}
$$

Example 4
Three pupils A, B and C have their birthdays in the same week. What is the probability that the three birthdays
(i) fall on a Monday
(ii) fall on the same day
(iii) fall on three different days?

$$
\text { (i) } p(m, m, m)=\left(\frac{1}{7}\right)\left(\frac{1}{7}\right)\left(\frac{1}{7}\right)=\frac{1}{343}
$$

(ii) P (same day $)=7 \times$ Probability all on particular day

$$
=\frac{7}{343}=\frac{1}{49}
$$

(iii) $P\left(\underset{\substack{\text { all different days } \\ \text { not independent }}}{\substack{1 \\ \text { lIst } \\ \text { pearson }}}\left(\underset{\substack{\text { nut } \\ \text { peesonon }}}{\frac{6}{7}}\right)\left(\frac{5}{7}\right)\right.$

$$
=\frac{39}{49}
$$

