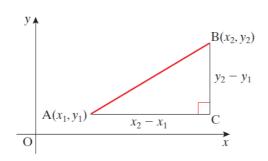
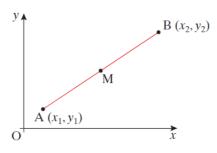
Coordinate Geometry: The Line


Section 1.1 Revision of formulae

7

Distance between two points

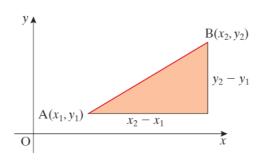

The distance between A(x_1, y_1) and B(x_2, y_2) is $|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

2. The midpoint of a line segment

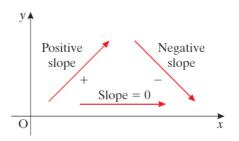
The midpoint M of the line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$ is

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

3. The slope of a line

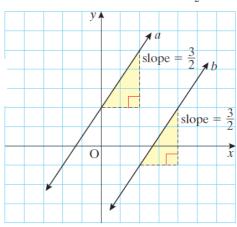

In the diagram on the right, the slope, *m*, of AB is found by getting the value of

$$\frac{\text{vertical change}}{\text{horizontal change}} = \frac{y_2 - y_1}{x_2 - x_1}$$


The slope, m, of the line passing through (x, y) and (x, y) is

$$(x_1, y_1)$$
 and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$


4. Positive and negative slopes

5. Parallel lines

The lines a and b in the given diagram both have the slope $\frac{3}{2}$.

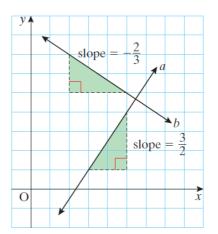
Parallel lines have equal slopes.

6. Perpendicular lines

The given lines a and b are perpendicular.

The slope of a is $\frac{3}{2}$.

The slope of $b = -\frac{2}{3}$.

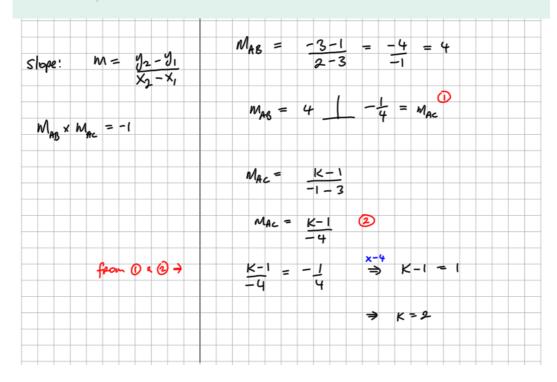

Notice that one slope is the reciprocal of the other with the sign changed.

Notice also that the product of the two slopes is -1, i.e.,

$$-\frac{2}{3} \times \frac{3}{2} = -1$$

If two lines are perpendicular, the product of their slopes is -1, i.e.,

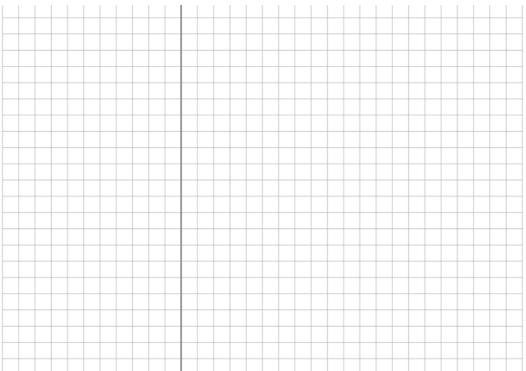
$$m_1 \times m_2 = -1$$



$$\frac{2}{3}$$
 $\left| -\frac{3}{2} \right|$

Example 1

A(3,1), B(2,-3) and C(-1,k) are three points in the plane.


If AB \perp AC, find the value of k.

Exercise 1.1 —

- **1.** Given three points A(-1,3), B(3,-2) and C(5,2).

 - Find (i) |AB|
- (ii) |BC| (iii) the slope of AC
- (iv) the midpoint of [BC].

