Probability 1

Section 1.6 The multiplication law for independent events ——

- of one doesn't dependent on the other.
- o If A is not independent of B
 it's probability is "ConditionAL"

30

Paul spins a coin

and rolls a dice.

His results are shown on the right.

The coin and the dice do not affect each other, so their outcomes are **independent**.

There are 12 equally likely outcomes of the coin and dice, as shown in the diagram on the right.

From the sample space, we can see that the probability of a head and a 5 is $\frac{1}{12}$.

The probability of each outcome can also be found by multiplying the separate probabilities, as shown above.

6	H, 6	T, 6
5	H, 5	T, 5
Diag. 4	H, 4	T, 4
3	H, 3	T, 3
2	H, 2	T, 2
1	H, 1	T, 1
Dice 3	H, 3 H, 2	T, 3 T, 2

H(ead) T(ail) Coin

This illustrates the **multiplication law** of probability which states that for independent events A and B,

$$P(A \text{ and } B) = P(A) \times P(B)$$

This law is sometimes called the AND Rule.

The multiplication law applies to any number of independent events.

Example 1

When two dice are thrown, what is the probability of getting

- (i) two sixes
- (ii) 4 or more on each die?

