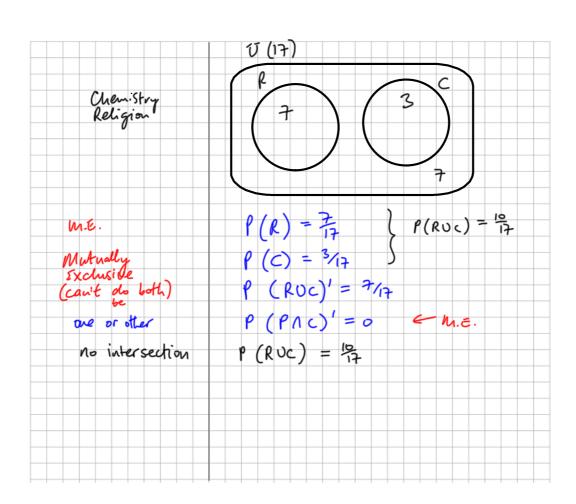
Probability 1

Section 1.5 Mutually exclusive events - The addition rule ———



Consider the following two events when drawing a card from a pack of 52 playing cards:

$$A = drawing an ace$$

$$B = drawing a king.$$

These two events are said to be **mutually exclusive** as they cannot occur together.

If the events A and B cannot happen together, then

$$P(A \text{ or } B) = P(A) + P(B)$$

This is called the addition law for mutually exclusive events.

So
$$P(\text{draw an ace or king}) = P(\text{ace}) + P(\text{king})$$

= $\frac{4}{52} + \frac{4}{52}$
= $\frac{8}{52} = \frac{2}{13}$

Outcomes are mutually exclusive if they cannot happen at the same time.

When events are not mutually exclusive

We will now consider events which may occur at the same time.

If A is the event: selecting an ace from a pack of cards and

B is the event: selecting a heart from a pack of cards

then
$$P(A) = \frac{4}{52}$$
 and $P(B) = \frac{13}{52}$

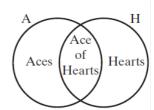
In this situation, both events may occur at the same time since the ace of hearts is common to both.

In general, when two events A and B can occur at the same time,

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

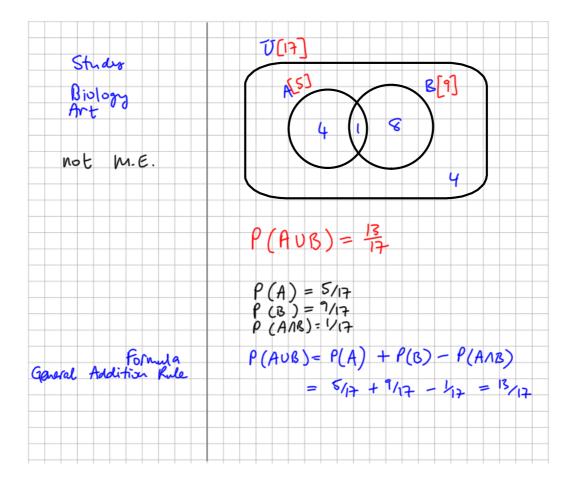
Thus in the example given above,

$$P(\text{ace or heart}) = P(\text{ace}) + P(\text{heart}) - P(\text{ace and heart})$$
$$= \frac{4}{52} + \frac{13}{52} - \frac{1}{52}$$
$$= \frac{16}{52}$$



This result can be verified as there are 4 aces and 13 hearts in a pack of cards. Since one of the aces is the ace of hearts, there are 16 aces or hearts in the pack.

i.e.
$$P(\text{ace or a heart}) = \frac{16}{52}$$
, as already found.



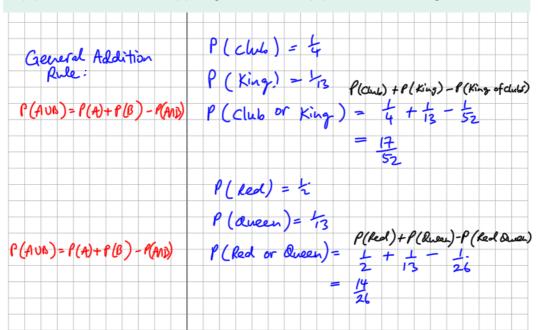
Example 1

A card is drawn at random from a pack of 52.

What is the probability that the card is

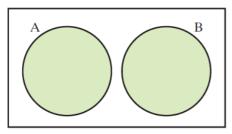
- (i) a club
- (ii) a king
- (iii) a club or a king

- (iv) a red card
- (v) a queen
- (vi) a red card or a queen

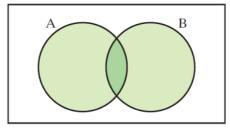


Venn diagrams for mutually exclusive events _

(i) Mutually exclusive



P(A or B) = P(A) + P(B) $P(A \cup B) = P(A) + P(B)$ (ii) Non-mutually exclusive



 $P(A \text{ or } B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Example 2

A and B are two events such that $P(A) = \frac{19}{30}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{4}{5}$. Find $P(A \cap B)$.

General Addition Rule $\frac{P(A \cup B)}{A \text{ oddition Rule}} = P(A) + P(B) - P(A \cap B) \\
\frac{4}{5} = \frac{19}{30} + \frac{1}{2} - P(A \cap B) \\
\frac{4}{5} = \frac{31}{30} = -P(A \cap B) \\
\frac{4}{5} = \frac{31}{30} = -P(A \cap B) \\
\frac{1}{5} = \frac{19}{30} = \frac{19$