

Section 4.1 Introduction to Integration

In general,
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$$

Example 1

Find (i)
$$\int (3x^2 + 4x + 5) dx$$
 (ii) $\int (2x - 1)^2 dx$.

(ii)
$$\int (2x-1)^2 dx$$

Find (i)
$$\int \frac{x^3 - 4x}{x} dx$$
 (ii) $\int \left(x^3 + \frac{1}{x^2} + \sqrt{x}\right) dx$ (iii) $\int \sqrt{x}(x+4) dx$

(iii)
$$\int \sqrt{x}(x+4) dx$$

Finding the constant of integration -

Each of the examples above contain an arbitrary constant c.

This arbitrary constant is generally called the **constant of integration**.

This constant of integration can be found if further information about the function is given.

This is illustrated in the following example.

Example 3

A curve with equation y = f(x) passes through the point (2,0).

If
$$f'(x) = 3x^2 - \frac{1}{x^2}$$
, find $f(x)$.

Exercise 4.1 -

- **1.** Find each of the following integrals:
 - (i) $\int x \, dx$
- (ii) $\int x^2 dx$
- (iii) $\int (3x^2 + 4x) \, \mathrm{d}x$

1. Find each of the following integrals:

(iv)
$$\int -2x^2 dx$$

(v)
$$\int 3 dx$$

(vi)
$$\int (-x^2 + 3) \, \mathrm{d}x$$

- **1.** Find each of the following integrals:

 - (vii) $\int (4x^3 + 6x) dx$ (viii) $\int (2x^2 3x 1) dx$ (ix) $\int 12y^2 dy$

7. A curve with equation y = f(x) contains the point (-1, 4). If f'(x) = 2x, find the equation of the curve.

Section 4.2 Integrating exponential and trigonometric functions —————

Find the antiderivative of each of the following:

- (i) $\int e^{3x} dx$

- (ii) $\int (e^{4x} + 6x) dx$ (iii) $\int (e^{5x} + 2) dx$ (iv) $\int (e^x + e^{-x}) dx$

Example 2

Given $y = 5^x$, use the rules of logarithms to find x in terms of y.

Hence, find (i) $\frac{dx}{dy}$

(ii) $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Use the result from (ii) to show that $\int 5^x dx = \frac{5^x}{\ln 5} + c$.

Find (i) $\int \cos 4x \, dx$

(ii) $\int \sin 3x \, dx$.

Example 4

If $y = \sin 3x^2$, find $\frac{dy}{dx}$.

Let $h(x) = x \ln x$, $x \in R$, x > 0.

- (i) Find h'(x).
- (ii) Hence, find $\int \ln x \, dx$.

Exercise 4.2 -

- **1.** Find the following integrals:
 - (i) $\int e^{2x} dx$
- (ii) $\int 3e^x dx$
- (iii) $\int 2e^{4x} dx$
- (iv) $\int e^{-3x} dx$

- **2.** Integrate each of the following:
 - (i) $\int (e^{3x} + 4) \, \mathrm{d}x$
- (ii) $\int 4e^{\frac{1}{2}x} dx$ (iii) $\int \left(e^{4x} + \frac{1}{e^{4x}}\right) dx$

- **5.** Integrate each of the following:

 - (i) $\int 3\cos 6x \, dx$ (ii) $\int (\cos 2x \sin 5x) \, dx$ (iii) $\int 3\cos(-9x) \, dx$

- **14.** Let $f(x) = 2x e^x$.
 - (i) Find f'(x).
 - (ii) Hence, find $\int 2x e^x dx$.

15. Given $f(x) = x \sin x$, find f'(x). Hence, find $\int x \cos x \, dx$.

Section 4.3 Applications of integration

Example 1

A body moves in a straight line.

At time t seconds, its acceleration is given by a = 6t + 1.

When t = 0, the velocity of the body is 2 m/sec and its displacement from a fixed point O is 1 metre.

- (i) Find expressions for v and s in terms of t.
- (ii) Find the velocity of the body after 4 seconds.

- 3. The acceleration of a body is given by a = 6t 12.
 - (i) Find the velocity v in terms of t, given that v = 9 when t = 0.
 - (ii) Find the displacement s in terms of t, given that s = 6 when t = 0.
 - (iii) Find the values of t when the body is at rest.

- **6.** $\frac{dN}{dt} = 4e^t + 10$ represents the rate at which a colony of bacteria increases, where *N* is the number of bacteria and *t* is measured in hours.
 - (i) Find an expression for N in terms of t.
 - (ii) If there were 10 bacteria in the colony initially, find the number in the colony after 5 hours, correct to the nearest whole number.

Section 4.4 Definite integrals

Evaluate (i) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 2x \, dx$ (ii) $\int_{2}^{5} 4e^{x} \, dx$ (iii) $\int_{0}^{2} 9^{x} \, dx$

The area, A, of the region between the curve y = f(x)and the x-axis between the lines x = a and x = b is given by

$$A = \int_{a}^{b} f(x) \, \mathrm{d}x$$

When using $\int_a^b y \, dx$ to find the area between a curve and the x-axis, the areas of the regions above and below the x-axis must be found separately.

If b > a, the value of $\int_a^b y \, dx$ will be positive if the area enclosed is above the *x*-axis, and negative if the area is below the *x*-axis.

If an area is -16, we take the absolute value, 16, to be the area.

Area between a curve and the y-axis

If we require the area between a curve and the y-axis, the function must be written in the form x = f(y).

The area of the shaded region between the curve and the y-axis between the lines y = b and y = a is given by:

Area between a curve and the y-axis

Area
$$A = \int_a^b x \, \mathrm{d}y$$

If the region is to the right of the y-axis, the area is positive; if the region is to the left of the y-axis, the area is negative.

Areas to the right and to the left of the *y*-axis must be found separately and then added.

x = f(y)

Find the area of the shaded region shown in the given diagram.

Area between two curves -

The given figure shows two curves y = f(x) and y = g(x) intersecting at the points where x = a and x = b.

The shaded area = $\int_a^b g(x) dx - \int_a^b f(x) dx$

Find the area of the region bounded by the curve $y = -x^2 + 5x - 4$ and the line y = x - 1.

Example 3

The diagram on the right shows a sketch of the function $y = \frac{2}{x^2}$.

The shaded region represents the area bounded by the curve and the x-axis between the lines x = 3 and x = 1.

If the line x = k divides this area into two equal portions, find the value of k.

Find the area of the shaded region in numbers (1–8):

5

6.

23. The functions f and g are defined for $x \in R$ as,

$$f(x) = 2x^2 - 3x + 2$$
 and $g(x) = x^2 + x + 7$.

- (i) Find the coordinates of the two points where the curves y = f(x) and y = g(x) intersect.
- (ii) Find the area of the region enclosed between the two curves.

Section 4.6 Average value of a function

The average value of a function f(x) over the interval [a, b] is

$$\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x.$$

The graph of the function, $f(x) = x^2 - 4x + 5$ is shown. Find the average value of the function for $1 \le x \le 4$.

Example 2

A body starts from rest and moves in a straight line. After t seconds its velocity (v) is given by $v = 2t - 4, t \ge 0$.

(i) By completing the table on the right, find the average velocity over the first 3 seconds.

t =	0	1	2	3
v =				

(ii) Use integration to test the accuracy of your answer.

The average value of the function f(x) = 2x + 3 for $1 \le x \le k$ is 11. Find the value of k.

4. Find the average value of the function $f(x) = x^2 + 4$ for $-2 \le x \le 3$.

13. The tension T newtons in a particular spring depends on the extension x metres of the spring from its natural length in accordance with the rule T = 30x. Find the average tension in the spring as x increases from 0.1 m to 0.2 m.

Syllabus

- recognise integration as the reverse process of differentiation
- use integration to find the average value of a function over an interval
- integrate sums, differences and constant multiples of functions of the form
 - x^a , where $a \in \mathbf{Q}$
 - a^x , where $a \in \mathbf{R}$
- Sin ax, where a ∈ R
- Cos ax, where $a \in \mathbf{R}$
- determine areas of plane regions bounded by polynomial and exponential curves

Maths Tables

Integration

Constants of integration omitted.

f(x)	$\int f(x)dx$	
$x^n, (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	
$\frac{1}{x}$	$\ln x $	
e^x	e^x	
e^{ax}	$\frac{1}{a}e^{ax}$	
$a^x (a>0)$	$\frac{a^x}{\ln a}$	
cos x	sin x	
$\sin x$	$-\cos x$	
tan x	$\ln \sec x $	
$\frac{1}{\sqrt{a^2-x^2}} (a>0)$	$\sin^{-1}\frac{x}{a}$	
$\frac{1}{x^2 + a^2} (a > 0)$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$	