Leaving Cert

Higher Level Project Maths

Differentiation

The Syllabus

Ordinary level

5.2 Calculus find first and second derivatives of linear, quadratic and cubic functions by rule

- associate derivatives with slopes and tangent lines
- apply differentiation to
 - · rates of change
 - · maxima and minima
 - · curve sketching

Higher level

- differentiate linear and quadratic functions from first principles
- differentiate the following functions
 - polynomial
 - exponential
 - trigonometric
 - rational powers
 - inverse functions
 - logarithms
- find the derivatives of sums, differences, products, quotients and compositions of functions of the above form
- apply the differentiation of above functions to solve problems
- use differentiation to find the slope of a tangent to a circle

Find the derivative of: (i) $y = 2x^5 + x^3$ (ii) $y = \frac{1}{x^4}$ (with respect to x)

If
$$f(x) = 8 + x^2 - \frac{1}{x}$$
 Find $f'(x)$

Find the derivative of
$$y = \frac{1}{2+5x}$$
 (with respect to x)

(with respect to x)

Find the derivative of y =
$$\sin^{-1} \frac{x}{5}$$

(with respect to x)

Find the derivative of
$$y = 2x - \sin 2x$$

(with respect to x)

(with respect to x)

Find the derivative of
$$y = \sin^{-1} \left(\frac{x}{\sqrt{1 + x^2}} \right)$$
 (with respect to x)

If $y = \sin x \cos x$ find the slope of the curve when $x = \frac{\pi}{2}$

If
$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
 Show $\frac{dy}{dx} = \frac{4}{(e^{x} + e^{-x})^{2}}$

Find the slope of the tangent to the circle $x^2 + y^2 = 25$ at the point (3,-4).

$$y = \tan^{-1} \left(\frac{x}{\sqrt{9 - x^2}} \right) \qquad \frac{dy}{dx} = ?$$

(ii)
$$y = e^{1+2\sin x} (1-2\cos x)$$
 $\frac{dy}{dx} = ?$

$$\frac{dy}{dx} = ?$$

(iii)
$$y = \ln\left(x^2\sqrt{x^3 + 2}\right)$$

$$\frac{dy}{dx} = ?$$

$$f(x) = \alpha^3 + 2\alpha^2 - 4\alpha + 3$$

Find the local max, local min, and point of inflection?

Differentiation

f(x)	f'(x)
x^n	nx^{n-1}
ln x	$\frac{1}{x}$
e^x	e^x
e^{ax}	ae ^{ax}
a^x	$a^x \ln a$
$\cos x$	$-\sin x$
sin x	$\cos x$
tan x	sec ² x
$\cos^{-1}\frac{x}{a}$	$-\frac{1}{\sqrt{a^2-x^2}}$
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$
$\tan^{-1}\frac{x}{a}$	$\frac{a}{a^2 + x^2}$

Product rule

$$y = uv \implies \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Chain rule

$$y = u(v(x))$$
 \Rightarrow $\frac{dy}{dx} = \frac{du}{dv} \frac{dv}{dx}$

Quotient rule

$$y = \frac{u}{v}$$
 \Rightarrow $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

formula and tables p. 25

You need to know that for a function f(x):

- (1) The derivative of a function is called the "Slope function" it gives us the Slope of the curve for every x value. f'(x) = Slope
- 2) At max and/or min values of a curve the slope = 0. At max/min f'(x) = 0 (also true for saddle pt.)
- 3 At a max point f''(x) < 0and at a min point f''(x) > 0
- (4) At the point of inflection the Second derivative =0

 At inflection point f'(x) = 0